A Real Generalization of Discrete AdaBoost
نویسندگان
چکیده
Scaling discrete AdaBoost to handle real-valued weak hypotheses has often been done under the auspices of convex optimization, but little is generally known from the original boosting model standpoint. We introduce a novel generalization of discrete AdaBoost which departs from this mainstream of algorithms. From the theoretical standpoint, it formally displays the original boosting property, as it brings fast improvements of the accuracy of a weak learner up to arbitrary high levels; furthermore, it brings interesting computational and numerical improvements that make it significantly easier to handle “as is”. Conceptually speaking, it provides a new and appealing scaling to R of some well known facts about discrete (ada)boosting. Perhaps the most popular is an iterative weight modification mechanism, according to which examples have their weights decreased iff they receive the right class by the current discrete weak hypothesis. In our generalization, this property does not hold anymore, as examples that receive the right class can still be reweighted higher with real-valued weak hypotheses. From the experimental standpoint, our generalization displays the ability to produce low error formulas with particular cumulative margin distribution graphs, and it provides a nice handling of those noisy domains that represent Achilles’ heel for common Adaptive Boosting algorithms. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
‘Modest AdaBoost’ – Teaching AdaBoost to Generalize Better
Boosting is a technique of combining a set weak classifiers to form one high-performance prediction rule. Boosting was successfully applied to solve the problems of object detection, text analysis, data mining and etc. The most and widely used boosting algorithm is AdaBoost and its later more effective variations Gentle and Real AdaBoost. In this article we propose a new boosting algorithm, whi...
متن کاملApproximation Stability and Boosting
Stability has been explored to study the performance of learning algorithms in recent years and it has been shown that stability is sufficient for generalization and is sufficient and necessary for consistency of ERM in the general learning setting. Previous studies showed that AdaBoost has almost-everywhere uniform stability if the base learner has L1 stability. The L1 stability, however, is t...
متن کاملA Fast Scheme for Feature Subset Selection to Avoid Overfitting in AdaBoost
AdaBoost is a well known, effective technique for increasing the accuracy of learning algorithms. However, it has the potential to overfit the training set because its objective is to minimize error on the training set. We show that with the introduction of a scoring function and the random selection of training data it is possible to create a smaller set of feature vectors. The selection of th...
متن کاملA Discrete Kumaraswamy Marshall-Olkin Exponential Distribution
Finding new families of distributions has become a popular tool in statistical research. In this article, we introduce a new flexible four-parameter discrete model based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-Olkin exponential distribution. The proposed distribution can be viewed as another generalization of the geometric distribution and enfolds some importan...
متن کاملSupport Vector Machines versus Boosting
Support Vector Machines (SVMs) and Adaptive Boosting (AdaBoost) are two successful classification methods. They are essentially the same as they both try to maximize the minimal margin on a training set. In this work, we present an even platform to compare these two learning algorithms in terms of their test error, margin distribution and generalization power. Two basic models of polynomials an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artif. Intell.
دوره 171 شماره
صفحات -
تاریخ انتشار 2006